This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#include "template/template.hpp"
#include "graph/graph_template.hpp"
#include "graph/dijkstra.hpp"
#include <algorithm>
int main() {
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int N, M, s, t; cin >> N >> M >> s >> t;
Graph<ll> gr(N);
for(int i=0; i<M; i++) {
ll a, b, c;
cin >> a >> b >> c;
gr.add_edge(a,b,c);
}
vector<ll>dist; vector<int>prev;
auto pr = dijkstra_path(gr, s);
dist = pr.first; prev = pr.second;
if (dist[t] > LLINF) {
cout << -1 << "\n";
}
else {
ll X = dist[t];
int Y;
vector<int> path;
{
int now = t;
while (now != -1) {
path.push_back(now);
now = prev[now];
}
Y = path.size();
}
reverse(path.begin(), path.end());
cout << X << " " << Y - 1 << "\n";
for(int i=0; i<Y-1; i++) {
cout << path[i] << " " << path[i+1] << "\n";
}
}
}
#line 1 "test/verify/yosupo-shortest-path.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#line 1 "template/template.hpp"
#include <iostream>
#include <cassert>
using namespace std;
using ll = long long;
template<class T> inline bool chmax(T& a, const T& b) {if (a<b) {a=b; return true;} return false;}
template<class T> inline bool chmin(T& a, const T& b) {if (b<a) {a=b; return true;} return false;}
const int INTINF = 1000001000;
const int INTMAX = 2147483647;
const ll LLMAX = 9223372036854775807;
const ll LLINF = 1000000000000000000;
#line 1 "graph/graph_template.hpp"
#include <vector>
template <typename T>
struct Edge {
int from; int to;
T cost;
// default constructor
Edge () : from(-1), to(-1), cost(T(0)) {}
Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {}
// unweighted
Edge(int _from, int _to) : from(_from), to(_to), cost(T(1)) {}
bool operator==(const Edge& rhs) const {
return from == rhs.from && to == rhs.to && cost == rhs.cost;
}
bool operator<(const Edge& rhs) const {
return cost < rhs.cost;
}
bool operator>(const Edge& rhs) const {
return cost > rhs.cost;
}
};
template <typename T>
struct Graph : std::vector<std::vector<Edge<T>>> {
using std::vector<std::vector<Edge<T>>>::vector; // inherit constructors
void add_edge(int i, Edge<T> e) {
(*this)[i].push_back(e);
}
void add_edge(Edge<T> e) {
(*this)[e.from].push_back(e);
}
// weighted
void add_edge(int _from, int _to, T _cost) {
(*this)[_from].push_back(Edge(_from, _to, _cost));
}
// unweighted
void add_edge(int _from, int _to) {
(*this)[_from].push_back(Edge(_from, _to, T(1)));
}
};
#line 1 "graph/dijkstra.hpp"
#include <queue>
#line 6 "graph/dijkstra.hpp"
#include <limits>
#include <utility>
#line 10 "graph/dijkstra.hpp"
template <typename T>
std::vector<T> dijkstra(const Graph<T>& graph, int start) {
int N = (int)graph.size();
constexpr T INF = numeric_limits<T>::max();
std::vector<T>dist(N, INF);
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>>que;
que.push(make_pair(T(0), start));
dist[start] = T(0);
while (!que.empty()) {
P front = que.top(); que.pop();
if (dist[front.second] < front.first) continue;
for (Edge ed : graph[front.second]) {
if (dist[ed.to] > front.first + ed.cost) {
dist[ed.to] = front.first + ed.cost;
que.emplace(dist[ed.to], ed.to);
}
}
}
return dist;
}
template <typename T>
std::pair<std::vector<T>, std::vector<int>> dijkstra_path(const Graph<T>& graph, int start) {
int N = (int)graph.size();
constexpr T INF = numeric_limits<T>::max();
using P = std::pair<T, int>;
std::vector<T>dist(N, INF);
std::vector<int>prev(N, -1);
std::priority_queue<P, std::vector<P>, std::greater<P>>que;
que.push(make_pair(T(0), start));
dist[start] = T(0);
while (!que.empty()) {
P front = que.top(); que.pop();
if (dist[front.second] < front.first) continue;
for (Edge ed : graph[front.second]) {
if (dist[ed.to] > front.first + ed.cost) {
dist[ed.to] = front.first + ed.cost;
prev[ed.to] = front.second;
que.emplace(dist[ed.to], ed.to);
}
}
}
return make_pair(dist, prev);
}
#line 6 "test/verify/yosupo-shortest-path.test.cpp"
#include <algorithm>
int main() {
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int N, M, s, t; cin >> N >> M >> s >> t;
Graph<ll> gr(N);
for(int i=0; i<M; i++) {
ll a, b, c;
cin >> a >> b >> c;
gr.add_edge(a,b,c);
}
vector<ll>dist; vector<int>prev;
auto pr = dijkstra_path(gr, s);
dist = pr.first; prev = pr.second;
if (dist[t] > LLINF) {
cout << -1 << "\n";
}
else {
ll X = dist[t];
int Y;
vector<int> path;
{
int now = t;
while (now != -1) {
path.push_back(now);
now = prev[now];
}
Y = path.size();
}
reverse(path.begin(), path.end());
cout << X << " " << Y - 1 << "\n";
for(int i=0; i<Y-1; i++) {
cout << path[i] << " " << path[i+1] << "\n";
}
}
}