This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/lcm_convolution"
#include "template/template.hpp"
#include "math/modint.hpp"
#include "convolution/divisor-zeta-moebius-transform.hpp"
using mint = modint998244353;
mint op(mint a, mint b) {
return a + b;
}
mint invop(mint a, mint b) {
return a - b;
}
int main() {
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int N; cin >> N;
vector<mint>a(N+1); for(int i=0; i<N; i++) cin >> a[i+1];
vector<mint>b(N+1); for(int i=0; i<N; i++) cin >> b[i+1];
vector<mint> za = divisor::zeta_transform_naive<mint,op>(a);
vector<mint> zb = divisor::zeta_transform_naive<mint,op>(b);
vector<mint> zc(N+1); for(int i=0; i<N+1; i++) zc[i] = za[i] * zb[i];
vector<mint> c = divisor::moebius_transform_naive<mint,invop>(zc);
for(int i=1; i<=N; i++) cout << c[i].val() << " \n"[i==N];
}
#line 1 "test/verify/convolution/yosupo-lcm-convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/lcm_convolution"
#line 1 "template/template.hpp"
#include <iostream>
#include <cassert>
using namespace std;
using ll = long long;
template<class T> inline bool chmax(T& a, const T& b) {if (a<b) {a=b; return true;} return false;}
template<class T> inline bool chmin(T& a, const T& b) {if (b<a) {a=b; return true;} return false;}
const int INTINF = 1000001000;
const int INTMAX = 2147483647;
const ll LLMAX = 9223372036854775807;
const ll LLINF = 1000000000000000000;
#line 1 "math/modint.hpp"
#line 1 "math/external_gcd.hpp"
#include <tuple>
// g,x,y
template<typename T>
constexpr std::tuple<T, T, T> extendedGCD(T a, T b) {
T x0 = 1, y0 = 0, x1 = 0, y1 = 1;
while (b != 0) {
T q = a / b;
T r = a % b;
a = b;
b = r;
T xTemp = x0 - q * x1;
x0 = x1;
x1 = xTemp;
T yTemp = y0 - q * y1;
y0 = y1;
y1 = yTemp;
}
return {a, x0, y0};
}
#line 5 "math/modint.hpp"
#include <type_traits>
#line 7 "math/modint.hpp"
template<int MOD, typename T = int>
struct static_modint {
T value;
constexpr explicit static_modint() : value(0) {}
constexpr static_modint(long long v) {
if constexpr (std::is_same<T, double>::value) {
value = static_cast<T>(v);
}
else {
value = int(((v % MOD) + MOD) % MOD);
}
}
constexpr static_modint& operator+=(const static_modint& other) {
if constexpr (std::is_same<T, double>::value) {
value += other.value;
}
else {
if ((value += other.value) >= MOD) value -= MOD;
}
return *this;
}
constexpr static_modint& operator-=(const static_modint& other) {
if constexpr (std::is_same<T, double>::value) {
value -= other.value;
}
else {
if ((value -= other.value) < 0) value += MOD;
}
return *this;
}
constexpr static_modint& operator*=(const static_modint& other) {
if constexpr (std::is_same<T, double>::value) {
value *= other.value;
}
else {
value = int((long long)value * other.value % MOD);
}
return *this;
}
constexpr static_modint operator+(const static_modint& other) const {
return static_modint(*this) += other;
}
constexpr static_modint operator-(const static_modint& other) const {
return static_modint(*this) -= other;
}
constexpr static_modint operator*(const static_modint& other) const {
return static_modint(*this) *= other;
}
constexpr static_modint pow(long long exp) const {
static_modint base = *this, res = static_modint(1);
while (exp > 0) {
if (exp & 1) res *= base;
base *= base;
exp >>= 1;
}
return res;
}
constexpr static_modint inv() const {
if constexpr (std::is_same<T, double>::value) {
return static_modint(1) / static_modint(value);
}
else {
int g, x, y;
std::tie(g, x, y) = extendedGCD(value, MOD);
assert(g == 1);
if (x < 0) x += MOD;
return x;
}
}
constexpr static_modint& operator/=(const static_modint& other) {
return *this *= other.inv();
}
constexpr static_modint operator/(const static_modint& other) const {
return static_modint(*this) /= other;
}
constexpr bool operator!=(const static_modint& other) const {
return val() != other.val();
}
constexpr bool operator==(const static_modint& other) const {
return val() == other.val();
}
T val() const {
if constexpr (std::is_same<T, double>::value) {
return static_cast<double>(value);
}
else return this->value;
}
friend std::ostream& operator<<(std::ostream& os, const static_modint& mi) {
return os << mi.value;
}
friend std::istream& operator>>(std::istream& is, static_modint& mi) {
long long x;
is >> x;
mi = static_modint(x);
return is;
}
};
template <int mod>
using modint = static_modint<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 1 "convolution/divisor-zeta-moebius-transform.hpp"
#include <vector>
#include <map>
namespace divisor {
// 約数についてのゼータ変換。 g_n = \Sigma_{m|n} f_m なる g を求める。
template <typename T, T(*op)(T, T) >
std::vector<T> zeta_transform_naive(const std::vector<T>& f) {
int N = f.size() - 1;
std::vector<T> g = f;
for (int i = 1; i <= N; i++) {
for (int j = 2 * i; j <= N; j += i) {
g[j] = op(g[j], f[i]);
}
}
return g;
}
// 約数についてのメビウス変換。 f_n = \Sigma_{m|n} g_m なる g を求める。
template <typename T, T(*invop)(T, T)>
std::vector<T> moebius_transform_naive(const std::vector<T>& f) {
int N = f.size() - 1;
std::vector<T> g = f;
for (int i = 1; i <= N; i++) {
for (int j = i * 2; j <= N; j += i) {
g[j] = invop(g[j], g[i]);
}
}
return g;
}
template <typename I, typename T, T(*op)(T, T)>
std::map<I, T> zeta_transform(const std::map<I, T>& mp) {
std::map<I, T> ret = mp;
for (auto p2itr = mp.rbegin(); p2itr != mp.rend(); p2itr++) {
for (auto p1itr = next(p2itr); p1itr != mp.rend(); p1itr++) {
if ((*p2itr).first % (*p1itr).first == 0) {
ret[(*p2itr).first] = op(ret[(*p2itr).first], ret[(*p1itr).first]);
}
}
}
return ret;
}
template <typename I, typename T, T(*op)(T, T)>
std::map<I, T> moebius_transform(const std::map<I, T>& mp) {
std::map<I, T> ret = mp;
for (auto p1itr = ret.begin(); p1itr != ret.end(); p1itr++) {
for (auto p2itr = next(p1itr); p2itr != ret.end(); p2itr++) {
if ((*p2itr).first % (*p1itr).first == 0) {
ret[(*p2itr).first] = invop(ret[(*p2itr).first], ret[(*p1itr).first]);
}
}
}
return ret;
}
} // namespace divisor
#line 6 "test/verify/convolution/yosupo-lcm-convolution.test.cpp"
using mint = modint998244353;
mint op(mint a, mint b) {
return a + b;
}
mint invop(mint a, mint b) {
return a - b;
}
int main() {
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int N; cin >> N;
vector<mint>a(N+1); for(int i=0; i<N; i++) cin >> a[i+1];
vector<mint>b(N+1); for(int i=0; i<N; i++) cin >> b[i+1];
vector<mint> za = divisor::zeta_transform_naive<mint,op>(a);
vector<mint> zb = divisor::zeta_transform_naive<mint,op>(b);
vector<mint> zc(N+1); for(int i=0; i<N+1; i++) zc[i] = za[i] * zb[i];
vector<mint> c = divisor::moebius_transform_naive<mint,invop>(zc);
for(int i=1; i<=N; i++) cout << c[i].val() << " \n"[i==N];
}